更新于 

PHP实现二叉排序树的插入&查询&删除

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
<?php

class BNode
{
public $data;
public $left;
public $right;

public function __construct($data = null)
{
$this->data = $data;
}
}

class BTree
{
public $root;

public function insert($value): BTree
{
$node = new BNode($value);
if (!$this->root) {
$this->root = $node;
return $this;
}
$current = $this->root;

while (true) {
if ($value < $current->data) {
if (!$current->left) {
$current->left = $node;
break;
}
$current = $current->left;
} else {
if (!$current->right) {
$current->right = $node;
break;
}
$current = $current->right;
}
}
return $this;
}

public function search($value): ?BNode
{
if (!$this->root) {
return null;
}
$current = $this->root;
while (true) {
if ($value === $current->data) {
return $current;
}
if ($value < $current->data) {
if (!$current->left) {
$current = null;
break;
}
$current = $current->left;
} else {
if (!$current->right) {
$current = null;
break;
}
$current = $current->right;
}
}
return $current;
}

public function delete($value)
{
$parent = null;
$current = $this->root;
while (true) {
// 已找到要删除的节点
if ($value === $current->data) {
// 1. 删除的节点没有子节点
if (!$current->left && !$current->right) {
// 如果父节点是null,说明删除的是根节点,把根节点设置为null
if (!$parent) {
$this->root = null;
break;
}
if ($parent->left === $current) {
$parent->left = null;
} else {
$parent->right = null;
}
break;
}
// 2. 删除的节点有一个子节点
// 当前节点有左子节点,没有右子节点
if ($current->left && !$current->right) {
// 如果父节点是null,说明删除的是根节点,把删除的节点的左子节点设置为根节点
if (!$parent) {
$this->root = $current->left;
break;
}
// 如果父节点的左子节点等于当前节点,说明要删除的节点是父节点的左子节点,把当前节点的左子节点设置为父节点的左子节点
if ($parent->left === $current) {
$parent->left = $current->left;
} else {
// 反之,如果父节点的右子节点等于当前节点,说明要删除的节点是父节点的右子节点,把当前节点的左子节点设置为父节点的右子节点
$parent->right = $current->left;
}
break;
}
// 当前节点有右子节点,没有左子节点
if (!$current->left && $current->right) {
// 如果父节点为null,说明删除的是根节点,把删除的节点的右子节点设置为根节点
if (!$parent) {
$this->root = $current->right;
break;
}
if ($parent->left === $current) {
// 如果父节点的左子节点等于当前节点,说明要删除的节点是父节点的左子节点,把当前节点的右子节点设置为父节点的左子节点
$parent->left = $current->right;
} else {
// 反之,如果父节点的右子节点等于当前节点,说明要删除的节点是父节点的右子节点,把当前节点的右子节点设置为父节点的右子节点
$parent->right = $current->right;
}
break;
}
// 3. 删除的节点有两个子节点
if ($current->left && $current->right) {
// 这里首先要明白一个概念,二叉树的中序后继节点/中序前驱节点,我这里找的是中序后继节点
$minParent = $current;
$minNode = $current->right;
while ($minNode->left) {
$minParent = $minNode;
$minNode = $minNode->letf;
}
$current->data = $minNode->data;


if ($current->right === $minNode) {
$current->right = $minNode->right;
break;
}

// 这中情况是删除的节点有两个子节点,且找到了中序后继节点,因为中序后继节点需要替换到被删除的节点位置
// 所以中序后继节点的父节点的左子节点需要设置为中序后继节点的右子节点,因为中序后继节点的左子节点一定是null
$minParent->left = $minNode->right;
break;
}
}
if ($value < $current->data) {
$parent = $current;
$current = $current->left;
}
if ($value > $current->data) {
$parent = $current;
$current = $current->right;
}
}
return $this;
}
}

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// 插入
$bTree = new BTree();
$bTree->insert(20)->insert(10)->insert(30)->insert(7)->insert(3)->insert(23)->insert(15)->insert(12)->insert(17)->insert(8);
echo "<pre>";
print_r($bTree);


// 查找
$node = $bTree->search(30);
print_r($node);

// 删除
$bTree->delete(7);
print_r($bTree);